Congrats on Timothy’s paper published in Indoor Air!

We are very proud of Timothy’s work, titled “Impact of glycol-based solvents on indoor air quality—Artificial fog and exposure pathways of formaldehyde and various carbonyls”, just published in Indoor Air (Link). A big congratulations to Timothy, Tolu, and Chester, who contributed to this work. Artificial fogs are commonly used in the entertainment and theatric industries to create special visual effects. Artificial fogs are made by heating a ‘fog juice’, which contain triethylene glycol and water. Although the risk of glycol inhalation has been implied, there has been no systematic study on how artificial fogs can affect indoor air. In our work, we monitored the particles arising from a fog machine, as well as the chemicals present in those particles. Surprisingly, we found a high concentration of carbonyls, including formaldehyde, from the fog juice. We hypothesized that autooxidation of triethylene glycol during storage is likely the source. This study presents a significant implication to stage actors, workers in the entertainment industry, and consumers of artificial fogs.

Vikram’s work published on ACS Earth and Space Chemistry

Congratulations to Vikram for his recent publication on ACS Earch and Space Chemistry “Evolution of Brown Carbon Aerosols during Atmospheric Long-Range Transport in the South Asian Outflow and Himalayan Cryosphere” (LINK)! Compiling field observations over the past 15 years, we have shown that the photochemical evolution of Brown Carbon – light-absorbing organic compounds – appears to be slower in the atmosphere over the Himalayas than in South Asian Outflow. We hypothesized that the cold and dry atmosphere over the Himalayas may be making the aerosol more viscous, delaying its photochemistry. This paper raises the possibility that The Himalaya cryosphere, which is among the most sensitive to climate change, may be slowing down the decay of light-absorbing species due to its inherent environment.